(facul	ty stamp) COURSE DESCRI	PTION	Z1-PU7	WYDANIE N1	Strona 1 z 2
1. Co	ourse title: Fluid mechanics		2. Course code	e	
3. Va	alidity of course description: 2015/2016	v of course description: 2015/2016			
4. Le	evel of studies: 1 st cycle of higher education				
5. M	ode of studies: intramural studies				
6. Fi	eld of study: Industrial and Engineering Chemistry		RCH		
7. Pi	ofile of studies: -				
8. Pr	ogramme: general				
9. Se	emester: 4				
10. F	aculty unit teaching the course: Department of Che	mical Engineering and Pro	cess Design		
11. (Course instructor: prof. Andrzej Gierczycki, PhD, DSo	2			
12. 0	Course classification: field				
13. (Course status: compulsory				
14. L	anguage of instruction: English				
15. F	Pre-requisite qualifications: basic knowledge of Math	nematics and Physics			
16. 0	Course objectives: An objective of the course is to ac	quaint students with the fur	ndamental princip	oles governing ga	is and liquid behaviour.
17. [Description of learning outcomes: underneath				
No.	Learning outcomes description	Method of assessment	Teacl	hing methods	Learning outcomes reference code
1.	student knows principles and laws of fluid statics and their practical applications	credit test	lecture		K1A_W01 ++ K1A_W14 +
2.	student possesses basic knowledge of pressure and fluid flow measurement methods	credit test	lecture		K1A_W01 ++ K1A_W14 +
3.	student knows laws of fluid dynamics, in particular those regarding liguid flow in conduits	credit test	lecture		K1A_W01 ++ K1A_W14 +
4.	student is able to carry out calculations concerning pressure drop in pipes and power of fluid transportation devices	credit test	class		K1A_U08 ++ K1A_U24 +
5.	student is able to calculate tank discharging time and design a required pipe diameter	credit test	class		K1A_U08 ++ K1A_U24 +
6.	student understands the necessity of further professional training and the development of his/her engineering and personal competence	observation and discussion	lecture, class, co	nsultation	K1A_K01 +
18. T	eaching modes and hours				
Lect	ure / BA /MA Seminar / Class / Project / Laboratory				
Lectu	rre sem. 4 - 30 hr / class – sem. 4 - 15 hr				
19.8	Syllabus description:		. "		
I he	course is divided into two parts: fluid statics and fluid c	lynamics. The first one con	nprises properties	s of fluid such as	density, viscosity, surface
tensi	on and capillarity. Then pressure measurements by th	The pressure measurements by the use of a parometer, prezometer, U-tube, differential micrometer and Burdon gauge			
are o	ilscussed. The equilibrium equation for fluids at rest is	ne equilibrium equation for fluids at rest is derived and its selected applications including Pascal's law are shown. Liquid action			
on in	nerseu sunaces and boules are presenteu under Archimedes principie and hydrostatic tirrust on a plain or curved surface. The second				
part	as with laminar and turbulent flow of liquid. The latter is described starting from the famous Reynolds experiment and then introducing				
conc	epts of deterministic chaos and the Kolmogorov micro	rerministic chaos and the Kolmogorov microscale of turbulence. A beauty and precision of fluid dynamics is shown in the form of			

-

Г

continuity and momentum equations (Euler, Cauchy-Lagrange and Navier-Stokes). More practical aspects of liquid flow are given by pressure losses calculations in smooth and rough pipes and the Bernoulli equation. Also some typical local pressure losses in elbows, diffusers, confusors and valves are considered. Transportation of liquids by pumps is shortly discussed together with the flow and pump system characteristics for an impeller pump. General dependencies for steady-state and unsteady-state discharge of liquid from a tank are derived. At the end, main devices used in fluid flow rate measurements, such as the Prandtl tube, Venturi meter, orifice meter, anemometer and rotameter are presented.

20. Examination: no

21. Primary sources:

Çengel Y.A., Cimbala J.M., Fluid mechanics. Fundamentals and Applications, McGraw Hill Co., New York 2006. Daugherty R.L., Franzini J.B., Fluid Mechanics with Engineering Applications, McGraw-Hill Book Company, Inc., New York 1977. Gierczycki A.T, Kubica R., Basic Course on Technical and Fluid Mechanics, Wyd. Pol. Śl., Gliwice 2012. Mott R.L., Applied Fluid Mechanics, Prentice Hall, Upper Saddle River 2000.

22. Secondary sources:

Bird R.B., Stewart W.E., Lightfoot E.N., Transport Phenomena, second edition, John Wiley & Sons, Inc., New York 2002. Cheremisinoff N.P., Gupta R. (Eds.), Handbook of Fluids in Motion, Butterworths, Boston 1983. Hinze J.O., Turbulence, McGraw–Hill Book Co., New York 1959. Gil M., Szymczak I., Gierczycki A., Jarzębski A., Thullie J., Chemical Engineering English-Polish Glossary, Wyd. Pol. Śl., Gliwice 2005.

Hirata M., Kasagi N. (Eds.), Transport Phenomena in Turbulent Flows, Hemisphere Publishing Corporation, New York 1988.

Longwell P.A., Mechanics of Fluid Flow, McGraw-Hill Book Company, Inc., New York 1966.

Marghitu D.B., Mechanical Engineer's Handbook, Academic Press, San Diego 2001.

McCabe W.L., Smith J.C., Unit Operations of Chemical Engineering, third edition, McGraw–Hill Book Co., New York 1976. Streeter V.L. (Ed.), Handbook of Fluid Dynamics, McGraw-Hill Book Company, Inc., New York 1961.

23. Total workload required to achieve learning outcomes

Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	30/-
2	Classes	15/15
3	Laboratory	-/-
4	Project	-/-
5	BA/ MA Seminar	-/-
6	Other	15/15
	Total number of hours	60/30
24. Tota	l hours: 90	
25. Nun	ber of ECTS credits: 3	
26. Nun	ber of ECTS credits allocated for contact hours:	2
27. Nun	ber of ECTS credits allocated for in-practice hou	rs (laboratory classes, projects):-
26. Con	iments:-	

(date, Instructor's signature)

(date , the Director of the Faculty Unit signature)