(facul	ty stamp) COURSE DESCRI	PTION	Z1-PU7 WYDANIE N1	Strona 1 z 2		
1. C	ourse title: Mechanics		2. Course code			
3. Va	alidity of course description: 2018/2019		1			
4. Le	evel of studies: 1st cycle of higher education					
5. M	ode of studies: intramural studies					
6. Fi	. Field of study: Industrial and Engineering Chemistry RCH					
7. Pi	ofile of studies: -					
8. Pi	rogramme: general					
9. Se	emester: 4					
10. F	Faculty unit teaching the course: Department of Che	emical Engineering and Pro	ocess Design			
11. (Course instructor: prof. Andrzej Gierczycki, PhD, DS	se instructor: prof. Andrzej Gierczycki, PhD, DSc				
12. (Course classification: field					
13. (Course status: compulsory					
14 1	anguage of instruction: English					
15.6	Pre-requisite qualifications: basic knowledge of Matt	auje of instruction. English				
10.1	-requisite quantications: basic knowledge of mathematics and Physics					
10. 0	sourse objectives. An objective of the course is to ac		nuamental principles of statics if			
strer	igth of materials, statics in fluid mechanics and fluid dy	namics.				
17. [Description of learning outcomes: underneath	-				
No.	Learning outcomes description	Method of assessment	Teaching methods	Learning outcomes reference code		
1.	student knows rules of statics in material systems and possesses the knowledge of simple cases of stresses in bars and methods of their calculations	credit test	lecture	K1A_W02 ++ K1A_W14 +		
2.	student knows principles and laws of fluid statics and their practical applications	credit test	lecture	K1A_W02 ++ K1A_W14 +		
3.	student knows laws of fluid dynamics, in particular those regarding liquid flow in conduits	credit test	lecture	K1A_W02 ++ K1A_W14 +		
4.	student is able to carry out simple calculations	credit test	class	K1A_U24 ++		
5.	student is able to carry out simple calculations	credit test	class	K1A_U24 ++		
6.	student understands the necessity of further professional training and the development of his/her engineering and personal competence	observation and discussion	lecture, class, consultation	K1A_K01 +		
18. T	eaching modes and hours					
Lect	ure / BA /MA Seminar / Class / Project / Laboratory					
Lectu	Lecture sem. 3 - 30 hr / class – sem. 3 - 30 hr					
19. 5	19. Syllabus description					
Lect	ures. The course is divided into two parts: technical	mechanics and fluid mec	hanics. The first part comprise	s introduction to statics and		
strer	strength of materials. The following tonics are discussed: model of rigid and elastic hodies, reduction of the system of forces, stress and					

strength of materials. The following topics are discussed: model of rigid and elastic bodies, reduction of the system of forces, stress and deformation, Hooke's law for normal and shear stresses, permissive stress method, simple cases of stresses in straight bars such as uniaxial tension and compression, torsion of bars with axisymmetrical cross-section area, pure and symmetric bending and pure shear. The second part consists of fluid statics and fluid dynamics. In fluid statics the equilibrium equation of fluid is derived and its application including Pascal's law is

shown. Liquid action on immersed surfaces and bodies is presented under Archimedes' principle and hydrostatic thrust on a plain or curved surface. In fluid dynamics the following topics are discussed: laminar and turbulent flow of liquid, equation of continuity, Bernoulli equation and its corrections for Newtonian liquid, pressure losses in smooth and rough pipes, local pressure losses in elbows, diffusers, confusors and valves. Transportation of liquids by pumps is presented. Steady-state and unsteady-state discharge of liquid from a tank are discussed.

Classes. During classes students solve practical problems connected with technical and fluid mechanics.

20. Examination: no

21. Lectures:

Çengel Y.A., Cimbala J.M., Fluid mechanics. Fundamentals and Applications, McGraw Hill Co., New York 2006.
Belyaev N.M., Strength of Materials (parts I, III, IV), MIR Publishers, Moscow 1979.
Blake A. (Ed.), Handbook of Mechanics, Materials and Structures, John Wiley & Sons, New York 1985.
Gierczycki A.T, Kubica R., Basic Course on Technical and Fluid Mechanics, Wyd. Pol. Śl., Gliwice 2012.
Gil M., Szymczak I., Gierczycki A., Jarzębski A., Thullie J., Chemical Engineering English-Polish Glossary, Wyd. Pol. Śl., Gliwice 2005.
Marghitu D.B., Mechanical Engineer's Handbook, Academic Press, San Diego 2001.

22. Classes:

Beer F.P. and Johnston E.R., jr., Vector Mechanics for Engineers. Statics, McGraw–Hill Book Co., New York 1984. Daugherty R. L., Franzini J. B., Fluid Mechanics with Engineering Applications, McGraw–Hill Book Co., New York 1977. Meriam J.L., Engineering Mechanics, vol.1 – Statics, John Wiley & Sons, New York 1987.

23. Total workload required to achieve learning outcomes

Lp.	Teaching mode:	Contact hours / Student workload hours
1	Lecture	30/-
2	Classes	30/30
3	Laboratory	-/-
4	Project	-/-
5	BA/ MA Seminar	-/-
6	Other (consultations, credit)	15/15
	Total number of hours	75/45
24. Tota	hours:120	
25. Nun	ber of ECTS credits: 4	
26. Nun	ber of ECTS credits allocated for contact hours:	2,5
27. Nun	ber of ECTS credits allocated for in-practice hou	urs (laboratory classes, projects): 1,5
26. Con	iments:-	

Approved:

.

(date, Instructor's signature)

(date, the Director of the Faculty Unit signature)