(facul	ty stamp) COURSE DESCRI	PTION		Z1-PU7	WYDANIE N1	Strona 1 z 2	
,							
1. C	ourse title: BIOPROCESSES ENGINEERING		2. C	ourse code)		
3. Va	alidity of course description: 2018/2019						
4. Le	evel of studies: 1st cycle of higher education						
5. M	ode of studies: full time daily studies						
6. Fi	eld of study: MACROFACULTY - INDUSTRIAL AND	ENGINEERING	RCH				
CHE	MISTRY						
7. Pi	ofile of studies: -						
8. Pi	ogramme: PROCESS ENGINEERING FOR GREEN	CHEMICAL TECHNOLOG	IES				
9. Se	emester: 6						
10. F	aculty teaching the course: Department of Chemica	I Engineering and Process	Desi	gn			
11. (Sourse instructor: dr hab. Inż. Katarzyna Szymańska						
12. (Course classification:						
13. (Course status:						
14. L	-anguage of instruction: English						
15. F	Pre-requisite qualifications: Bioprocess and process	engineering,					
16. 0	Course objectives: The course aims at building up the	e knowledge on the fundan	nenta	als of bioproo	cess engineering	aims, principl	es,
meth	ods and tools devised for the processes carried out wi	th microorganisms and enz	zyme	S.			
17. [Description of learning outcomes:						
No	Learning outcomes description	Method of assessment		Teach	ning methods	Le out refere	arning comes nce code
1.	Student is familiarized with basic concepts of bioprocess engineering: bioreactor engineering, balancing of mass, enzymatic and microbial kinetics, bioreactors design, modeling and analysis, and process scale up.	Examination/test	Lect	ure/classes		K2A_ K2/	_W09 ++ _U07+
2.	Student can write mass balances for basic bioprocess/reactor arrangements and has the skills of solving	Examination/test	Lect	ure/classes		K2A K2A	_W11+ _U24+
3.	Student knows the governing principles of microbial growth and enzymatic kinetics and the skills to evaluate it from experimental data.	Examination/test	Lect	ure/classes		K2A_	_W12 ++
4.	Student has the knowledge and skills to carry out dimensioning for typical bioreactors.	Examination/test	Lect	ure/classes		K2A	_W14+
5.	Student understands the need for a continual updating of both knowledge and skills and encourages its associates in doing the same. Student understands the need to give the information about the new way of developing biochemistry for the society	observation and discussion	Lect	ure/classes		K1/ K1/	A_K04+ A_K06+
6.							
18. T	eaching modes and hours						
Lect	ure / BA /MA Seminar / Class / Project / Laboratory						
Lectu	ire sem 1 - 30 h/ class 30h						
19. \$	3yllabus description:						

Lecture: Bioreactors – types, characteristics, mass balance equations, productivity. Elemental balance of microbial growth, concept of yield coefficients. Mass balancing for aerobic and anaerobic processes. Kinetics of biomass/microorganisms growth (Monod and related, structured and physiological/population models). Endogeneous metabolism, it effect and quantification. Kinetics of

enzymatic reactions (Michaelis-Menten, triple complex and bi-bi ping-pong models). Inhibition and inactivation of biocatalysts. Determination of reaction kinetics and its discriminations (Hofstee and Lineweaver-Burk plots). Chemostate/CSTR – properties and application. Model and analysis of the fermentor-settler system. Integrated – macro kinetics for heterogeneous biocatalysts – concept of catalyst efficiency(ies) and its determination.

20. Examination: yes

21. Primary sources:

1. S. Liu, Bioprocess Engineering. Kinetics, Biosystems, Sustainability, and Reactor Design, Elsevier, 2013.

2. J.E. Bailey, D.F. Olis, Biochemical Engineering Fundamentals, Mc-Graw 1994.

3. K.van't Riet, J. Tramper, Basic Bioreaktor Design, Marcel-Dekker 1991.

4. K. Szewczyk, Bilansowanie i kinetyka procesów biochemicznych, Ofic. Wyd. Pol. Warszawskiej (OWPW) 1997 – see also 2 ed. 22. Secondary sources:

1. J. Bałdyga, M. Henczka, W Podgórska, Obliczenia w inżynierii bioreaktorów, OWPW 1996.

2. H.-J. Rehm, G. Reed (Eds) Biotechnology, Vol 11a, Environmental processes, VCH 1999

23. Total workload required to achieve learning outcomes

Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	30/30
2	Classes	30/30
3	Laboratory	-/-
4	Project	-/-
5	BA/ MA Seminar	-/-
6	Other	15/15
	Total number of hours	75/75
24. Tota	I hours: 150	
25. Nun	ber of ECTS credits: 5	
26. Nun	ber of ECTS credits allocated for contact hours:	2
27. Nun	ber of ECTS credits allocated for in-practice hou	ırs (laboratory, classes, projects): -
26. Con	nments:	

Approved:

(date, Instructor's signature)

(date, the Director of the Faculty Unit signature)