(faculi	ty stamp) COURSE DESCRI	PTION	Z1-PU7	WYDANIE N1	Strona 1 z 2
1. Co	ourse title: ADVANCED CRYSTALLIZATION TECH	IOLOGIES – SOLID	2. Course code	9	
PRODUCT ENGINEERING					
3. Va	lidity of course description: 2019/2020				
4. Le	evel of studies: 2 nd cycle of higher education				
5. M	ode of studies: intramural studies				
6. Field of study: MACROFACULTY – INDUSTRIAL AND ENGINEERING			RCH		
CHEMISTRY					
7. Pr	ofile of studies: -	ł			
8. Pr	ogramme: PROCESS ENGINEERING FOR GREEN	CHEMICAL TECHNOLOG	IES		
9. Se	mester: 2 (2 nd cycle of higher education)				
10. F	aculty teaching the course: Department of Chemica	al Engineering and Process	Design (RCh-3)		
11. C	Course instructor: Krzysztof Piotrowski, PhD, DSc. (E	ing)			
12. C	Course classification: field				
13. C	Course status: elective				
14. L	anguage of instruction: English				
15. F	Pre-requisite qualifications: basic knowledge of Che	mistry, Chemical Technolog	gy and Unit Oper	ations concerning	separation methods
16. C	Course objectives: An objective of the course is provi	ding the students with theo	retical backgrour	nd of processes u	sed in modern
techr	nologies of crystalline substances production				
17. C	Description of learning outcomes:				
No	Learning outcomes description	Method of assessment	Teach	ning methods	Learning outcomes reference code
1.	Student knows theoretical backgrounds of crystallization processes and their mechanisms	examination	lecture		K_W02+++ K_W03+++
2.	Student can rationally select proper technology of	examination	lecture		K_W07+++ K_U01++
	crystalline product manufacturing for practical cases				K_U07++
					K_U08++ K_U09+++
					K_U11+++
3.	Student can correctly identify main factors influencing	examination	lecture		K_U13+++ K_U07+++
0.	final properties of crystalline product manufactured with				K_U08++
	the use of chosen technology				K_U09++ K_U10+++
4.	Student uses literature data and data	examination	lecture		K_U11++ K_U01+++
4.	processing/communication techniques, as well as modern				K_U07+++
	simulation tools for modeling of crystallization processes in various scales (Monte Carlo, CFD)				K_U09++ K_U21+++
5.	Student can use in practice modern techniques for production of crystalline substances of required	examination	lecture		K_U08+++ K_U09+++
	properties, e.g. in pharmaceutical or optical industry				K_U10+++
6.	Student understands the necessity of further professional	observation and discussion	lecture, consultat	ion	K_U13+++ K_K01+++
	training and the development of his/her engineering and personal competence				
					· · · · · · · · · · · · · · · · · · ·

18. Teaching modes and hours

Lecture / BA /MA Seminar / Class / Project / Laboratory

Lecture - 30 h

19. Syllabus description:

Lecture: Crystallization process – theoretical basis. Solid product engineering – crystallization as a powerful tool. Pharmaceutical products purification – general rules and practical examples. Optical properties of crystals. Reaction crystallization engineering – adjustment of product properties by rational manipulation of process conditions. Precipitation kinetics and accompanying physicochemical phenomena (precipitation diagrams, secondary changes within the precipitated phase – recrystallization, ageing, coagulation, agglomeration, kinetics of phase transformation). Computer methods for crystal product design and prediction of its potential properties. Production of crystalline materials for special applications. Reaction crystallization processes in environmental protection – pellet reactors, theoretical background and design methods. Steering of crystal properties by additives – factors influencing crystal growth. Hydrodynamics of suspension – mixing effects. Macromixing, mesomixing and micromixing phenomena. Crystal-fluid interactions in various scales. CFD methods in crystallization process design – from single crystal behavior in liquid environment to industrial crystallizer performance.

20. Examination: yes (test)

21. Primary sources:

Myerson A.S., Handbook of Industrial Crystallization, Butterworth-Heinemann, Stoneham 1993. Jancic S.J., Grootscholten, P.A.M., Industrial Crystallization, Delft University Press, Delft 1984. Tung H.H., Paul E.L., Midler M., McCauley J.A., Crystallization of Organic Compounds: An Industrial Perspective, Wiley 2009. Muller G., Metois J.J., Rudolph P., Crystal Growth – From Fundamentals to Technology, Elsevier 2004. Mullin J.W., Crystallization, Butterworth-Heinemann, 2001. Jones A.G., Crystallization Process Systems, Butterworth-Heinemann, 2002.

22. Secondary sources:

Sangwal K., Additives and Crystallization Processes: From Fundamentals to Applications, Wiley 2007. am Ende D.J., Chemical Engineering in the Pharmaceutical Industry: R&D to Manufacturing., Wiley 2010. Tiekink E.R.T., Vittal J., Zavorotko M., Organic Crystal Engineering: Frontiers in Crystal Engineering, Wiley 2010. Ramkrishna D., Population Balances. Theory and Applications to Particulate Systems in Engineering, Academic Press, 2000.

	Contact hours / Student workload hours
1 Lecture	30/10
2 Classes	-/-
3 Laboratory	-/-
4 Project	-/-
5 BA/ MA Seminar	-/-
6 Other	-/20
Total number of hours	30/30
24. Total hours: 60	
25. Number of ECTS credits: 2	
26. Number of ECTS credits allocated for contact hours: 1	
27. Number of ECTS credits allocated for in-practice hour	s (laboratory classes, projects): -

Approved:

(date, Instructor's signature)

(date, the Director of the Faculty Unit signature)