(facul	ty stamp) COURSE DESCRI	PTION	Z	1-PU7	WYDANIE N1	Strona 1 z 2		
1. C	ourse title: Computational Fluid Dynamics		2. Cour	2. Course code				
3. Va	lidity of course description: 2012/2013							
4. Level of studies: 2 nd cycle of higher education								
5. Mode of studies: intramural studies								
6. Fi	eld of study: Industrial and Engineering Chemistry	RCH						
7. Profile of studies: Process Engineering for Green Chemical Technologies								
8. Pi	rogramme: general							
9. Se	emester: 2							
10. Faculty unit teaching the course: Department of Chemical and Process Engineering								
11. (Course instructor: Marcin Lemanowicz, Ph.D., assista	ant						
12. Course classification: field								
13. Course status: compulsory								
14. Language of instruction: English								
15. Pre-requisite qualifications: basic knowledge of Mathematics, Physics, Fluid Mechanics, Computer Science, Computer Aided Design								
16. Course objectives: The goal of this course is to present the basic applications of CFD in Chemical Engineering and to present the Ansys								
Workbench environment with a particular emphasis on DesignModeler, Mesh, Fluent and CFD-Post. After this course students should be able to								
prepare a numerical analysis of some of the Fluid Mechanics phenomena.								
17. Description of learning outcomes:								
Nr	Learning outcomes description	Method of assessment		Teach	ning methods	Le	earning	
						ou refer	ence code	
4		the side day shorts of an	1-6				14/04	
1.	student knows the basics of Ansys Workbench	Unaided analysis of an issue chosen by tutor	laborato	ſy		K2A_ K2/	_vv01 +++ A_W02 +	
2.	student possess a basic knowledge concerning	Unaided analysis of an	laborator	ry		K2A	_W01 ++ ∆_W02 +	
	engineering phenomena					K2/	4_W03 +	
3.	student is able to create a geometrical model using Ansys Workbench	Unaided analysis of an issue chosen by tutor	laborator	ſy		K2A K2A	A_U07 ++ _U09 +++	
4.	Student is able to generate a valid numerical mesh	Unaided analysis of an	laborator	ry		K2A	_U07 ++	
5	using Ansys Workbench student is able to run a simulation using Ansys	Issue chosen by tutor	laborato	îv.		K2A	_009 +++	
J.	Fluent	issue chosen by tutor	aborator	y		K2	A_U06 +	
						K2A K2A	A_U07 ++ U09 +++	
6.	student can think in a creative way	Unaided analysis of an issue chosen by tutor	laborato	ſy		K2A	_K06 +++	
18. Teaching modes and hours								
Lecture / BA /MA Seminar / Class / Project / Laboratory								

Laboratory sem. 2 - 45h

19. Syllabus description:

During the course students are introduced to:

- methods of creation of 2D sketches, 3D bodies as well as how to import a geometry from other CAD software using DesignModeler
- methods of generation of different numerical meshes depending on given geometry a the nature of analyzed system using Mesh

module

- solver settings depending on a given geometry and mesh
- calculation methods using Fluent
- methods of results generation as well as their presentation using CFD-Post

20. Examination: no

21. Primary sources:

Ansys Workbench, manual.

Blazek J., Computational Fluid Dynamics: Principles and Applications, Elsevier Science 2005.

22. Secondary sources:

Jaworski Z., Mechaniczna numeryka płynów w inżynierii chemicznej, Wydawnictwo Exit, Warszawa 2005.

Date A.W., Introduction to Computational Fluid Dynamics, Cambridge University Press 2009.

Peyret R. (ed.), Handbook of Computational Fluid Mechanics, Academic Press 1996.

23. I ota	workload required to achieve learning outcom	les	
Lp.	Teaching mode :	Contact hours / Student workload hours	
1	Lecture	-/-	
2	Classes	-/-	
3	Laboratory	45/15	
4	Project	-/-	
5	BA/ MA Seminar	-/-	
6	Other	15/15	
	Total number of hours	60/30	
24. Tota	hours:90		
25. Num	ber of ECTS credits: 3		
26. Num	ber of ECTS credits allocated for contact hour	's : 2	
27. Num	ber of ECTS credits allocated for in-practice h	ours (laboratory classes, projects): 2	
26. Com	ments:-		

Approved:

(date, Instructor's signature)

(date , the Director of the Faculty Unit signature)