(facul	ty stamp) COURSE DESCRI	PTION	Z1-PU7 WYDA	NIE N1 Strona 1 z 2			
1. C	ourse title: SMART POLYMERS		2. Course code				
3. Va	alidity of course description: 2016/2017		l				
4. Le	evel of studies: 2 nd cycle of higher education						
5. Mode of studies: intramural studies							
6. Fi	eld of study: INDUSTRIAL ENGINEERING CHEMIST	(FACULTY SYMBOL) RCH4					
7. P	rofile of studies:						
8. P	rogramme: NANOMATERIALS AND FINE CHEMICA	LS, PROCESS ENGINEE	RING FOR GREEN CHE	MICAL TECHNOLOGIES			
9. S	emester: II						
10. I	Faculty teaching the course: Department of Physica	al Chemistry and Techno	logy of Polymers (RCh-	4)			
11. (Course leader: Dorota Neugebauer, DSc, associate	professor					
12. (Course classification: core engineering						
13. (Course status: compulsory						
14. I	anguage of instruction: English						
15. F	Pre-requisite qualifications: Organic chemistry, Introd	duction to plastics					
16. (Course objectives: The fundamental knowledge in "in	telligent" polymers as a gro	oup of macromolecules wi	th special properties and common			
appl	ications.						
17. [Description of learning outcomes:						
Nr	Learning outcomes description	Method of assessment	Teaching methods	Learning outcomes reference code			
1.	Student has knowledge about modern polymer materials used in the various areas of life	Passing Test	Lecture	K_W04 (+), K_W07 (+++), K_K02 (+)			
2.	Student can identify the kind of stimulus responsible for change behavior of the "smart" polymers	Passing Test	Lecture	K_W02 (++)			
3.	Student is aware of the use of plastic production with respect of the environment protection (recycling)	Passing Test Oral Presentation	Lecture Seminar	K_W06 (+), K_W09 (+++), K_U12 (++), K_U16 (+)			
4.	Student is able to prepare and present an oral	Oral Presentation	Seminar	K_U06 (++), K_K07 (+)			
5.	Student is able to analyze and discuss on the presented topics	Oral Presentation	Seminar	K_U04 (++)			
	eaching modes and hours ure / BA /MA Seminar / Class / Project / Laboratory						

Lec 15 h., Sem - 15 h

19. Syllabus description:

Lectures:

Basic terms and definitions. Biodegradable polymers and plastics (basic definitions and motivation). Stimuli responsive polymers (SRP). Thermo-, electro- and photochromic polymers. Light-emitting polymers (LEP). Shape memory polymers. Piezoelectric polymers. Electroactive polymers. Self-healing/repairing polymers. Self-cleaning polymeric coatings. Liquid crystal polymers. Energy harvesting materials. Composites and polymers functionalized with carbon materials (fullerene, carbon nanotubes). Photovoltaic cells.

Seminars:

Students give short presentations about common plastics as well as based on scientific regular and review articles published in area of smart polymers in the current academic year.

20. Examination: no

21. Primary sources:

- 1. J. Rodriguez-Hernandez, F. Checot, Y. Gnanou, S. Lecommandoux "Toward 'smart' nano-objects by self-assembly of block copolymers in solution" Prog. Polym. Sci. 30 (2005) 691–724
- 2. M.R.Aguilar, C. Elvira, A. Gallardo, B. Vázquez, and J.S. Román "Smart Polymers and Their Applications as Biomaterials" Topics in Tissue Engineering Vol. 3, Chap. 6, 2007. Eds. N Ashammakhi, R Reis & E Chiellini
- 3. N. Kumar, M.N.V. Ravikumar, A.J. Domb "Biodegradable block copolymers" Advanced Drug Delivery Reviews 53 (2001) 23-44
- 4. L.S. Nair, C.T. Laurencin "Biodegradable polymers as biomaterials" Prog. Polym. Sci. 32 (2007) 762–798
- 5. L. Akcelrud "Electroluminescent polymers" Prog. Polym. Sci. 28 (2003) 875–962
- 6. S.H. Cho, S.R. White, P.V. Braun "Self-Healing Polymer Coatings" Adv. Mater. 21 (2009) 645-649
- A. Kumar, A. Srivastava, I.Y. Galaev, B. Mattiasson "Smart polymers: Physical forms and bioengineering applications" Prog. Polym. Sci. 32 (2007) 1205–1237

22. Secondary sources:

The newest articles describing smart polymers.

Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	15 / 15
2	Classes	/
3	Laboratory	/
4	Project	/
5	BA/ MA Seminar	15 / 15
6	Other	1
	Total number of hours	30 / 30
24. Tot	al hours:60	
25. Nu	mber of ECTS credits: 2	
26. Nu	mber of ECTS credits allocated for contact hours	:1
27. Nu	mber of ECTS credits allocated for in-practice ho	urs (laboratory classes, projects):-
26. Co	nments:-	

Approved:

(date, Instructor's signature)

(date , the Director of the Faculty Unit signature)